Sunday, August 9, 2015

Basic techniques of differentiation

Techniques of Differentiating
The following are basic techniques of differentiating. 
(a) Power rule
So far we have seen that given; y=f(x)=kx^{n}
Then the gradient function is; dy/dx=knx^{n-1}

Example 1: Differentiate the function y=3x^{5} with respect to x
solution: dy/dx=15x^{4}

Example 2: Find the derivative of the function y=2x^{3}-6x+3
solution : dy/dx=6x^{2}-6

Example 3: Differentiate the function y= [6x^{3}-7x]/[x^{2}]
solution: we need to first simplify the function by rewriting it as;
y=6x^{3}/x^{2}-7x/x^{2}=6x-7x^{-1}
Hence we have;
          dy/dx =6+7x^{-2}
(b) Product rule
Let y=f(x)=uv where u and v are both differentiable functions of x, then the gradient function is given as;
dy/dx= u dv/dx+v du/dx
Alternatively;
 (uv)/=uv/ +vu/
This rule is appropriate when it comes to integrating product functions.

Example 1: Given y=(3x^{4}+7x)(5x^{7}-3x^{2}+9x) determine the derivative.
Solution: by definition dy/dx=u dv/dx+ v du/dx
we let,
u=3x^{4}+7x then du/dx=12x^{3}+7  and we let v=5x^{7}-3x^{2}+9x  then dv/dx =35x^{6}-6x+9
Therefore; 
dy/dx=u dv/dx+ v du/dx=(3x^{4}+7x)(35x^{6}-6x+9)+(5x^{7}-3x^{2}+9x)(12x^{3}+7)

Example 2: Given y=3x^{5}sinx , determine the gradient function.
Solution: by definition dy/dx =u dv/dx+v du/dx
We let, u=3x^{5} then du/dx =15x^{4}
Also let, v = sinx    then  dv/dx =cosx
Therefore; 
dy/dx=u dv/dx+v du/dx =3x^{5}cos x+15x^{4}sin x=3x^{4}(xcos x+5sin x)

Example 3: Let y=3x^{2}e^{x}, find dy/dx

Solution: We let u=3x^{2} then du/dx=6x
Also v=e^{x} then dv/dx=e^{x}
Hence;
dy/dx=(3x^{2})(e^{x})+(6x)(e^{x})=3x^{2}e^{x}+6xe^{x}

(c)  Quotient rule
Let y=f(x)= u/v  where u and  v are both differentiable functions of  x, then the gradient function is given as;
dy/dx=[v du/dv –u dv/dx]/v^{2}

Example 1:  Given y= 4x^{3}/[3x^{2}-4x]  find dy/dx;
Solution: Let u=4x^{3} then du/dx =12x^{2} and v =3x^{2}-4x then dv/dx = 6x-4
dy/dx=[12x^{2}(3x^{2}-4x)-4x^{3}(6x-4)}]/[(3x^{2}-4x)^{2}]
=[36x^{4}-48x^{3}-24x^{4}+16x^{3}]/[{(3x^{2}-4x)^{2}}]
=[12x^{4}-32x^{3}]/[(3x^{2}-4x)^{2}]
=[4x^{3}(3x-8)]/[(3x^{2}-4x)^{2}]

Example 2: Find the derivative of the function;
y= 2x/sin x
Solution: Let;
u = 2x then du/dx  =2
Let; v= sin x then dv/dx=cos x
Hence;
dy/dx=[2sin x -2xcos x]/sin^2x=2[sin x – x cos x]/ sin^{2}x

(d) Chain rule
Let y be a differentiable function of  u  i.e.  y=f(u)  and that u  is a differentiable function of x i.e. u=g(x), then y is a differentiable function of x i.e. y=f(g(x)), and;
dy/dx=(dy/du )(du/dx)

Example 1: Suppose y=(3x^{5}+7x^{4})^{4}, find dy/dx
Solution:
Let u=3x^{5}+7x^{4} then  du/dx=15x^{4}+28x^3
Also y=u^{4} then  dy/du=4u^{3}
By definition
dy/dx=(dy/du)(du/dx)=(4u^{3})(15x^{4}+28x^3)
=4(15x^{4}+28x^3)(3x^{5}+7x^{4})^{3}
=4x^{3}(15x+28)(3x^{5}+7x^{4})^{3}


No comments:

Post a Comment