Techniques of Differentiating
The following are basic techniques of
differentiating.
(a)
Power rule
So far we have seen that given;
y=f(x)=kx^{n}
Then the gradient function is;
dy/dx=knx^{n-1}
Example 1: Differentiate the function y=3x^{5} with respect to x
solution: dy/dx=15x^{4}
Example 2: Find the derivative of the function
y=2x^{3}-6x+3
solution : dy/dx=6x^{2}-6
Example 3: Differentiate the function y=
[6x^{3}-7x]/[x^{2}]
solution: we need to first simplify the function by
rewriting it as;
y=6x^{3}/x^{2}-7x/x^{2}=6x-7x^{-1}
Hence we have;
dy/dx =6+7x^{-2}
(b)
Product rule
Let y=f(x)=uv where u and v are both
differentiable functions of x, then the gradient function is given as;
dy/dx= u dv/dx+v du/dx
Alternatively;
(uv)/=uv/ +vu/
This rule is appropriate when it comes to
integrating product functions.
Example 1: Given y=(3x^{4}+7x)(5x^{7}-3x^{2}+9x)
determine the derivative.
Solution: by definition dy/dx=u dv/dx+ v du/dx
we let,
u=3x^{4}+7x then du/dx=12x^{3}+7 and we let v=5x^{7}-3x^{2}+9x then dv/dx =35x^{6}-6x+9
Therefore;
dy/dx=u dv/dx+ v du/dx=(3x^{4}+7x)(35x^{6}-6x+9)+(5x^{7}-3x^{2}+9x)(12x^{3}+7)
Example 2: Given y=3x^{5}sinx , determine the
gradient function.
Solution: by definition dy/dx =u dv/dx+v du/dx
We let, u=3x^{5} then du/dx =15x^{4}
Also let, v = sinx then
dv/dx =cosx
Therefore;
dy/dx=u dv/dx+v du/dx =3x^{5}cos x+15x^{4}sin
x=3x^{4}(xcos x+5sin x)
Example
3: Let y=3x^{2}e^{x},
find dy/dx
Solution: We let u=3x^{2} then du/dx=6x
Also v=e^{x} then dv/dx=e^{x}
Hence;
dy/dx=(3x^{2})(e^{x})+(6x)(e^{x})=3x^{2}e^{x}+6xe^{x}
(c) Quotient rule
Let y=f(x)= u/v where u
and v are both differentiable functions
of x, then the gradient function is
given as;
dy/dx=[v du/dv –u dv/dx]/v^{2}
Example
1: Given y= 4x^{3}/[3x^{2}-4x] find dy/dx;
Solution: Let u=4x^{3} then du/dx =12x^{2} and v =3x^{2}-4x
then dv/dx = 6x-4
dy/dx=[12x^{2}(3x^{2}-4x)-4x^{3}(6x-4)}]/[(3x^{2}-4x)^{2}]
=[36x^{4}-48x^{3}-24x^{4}+16x^{3}]/[{(3x^{2}-4x)^{2}}]
=[12x^{4}-32x^{3}]/[(3x^{2}-4x)^{2}]
=[4x^{3}(3x-8)]/[(3x^{2}-4x)^{2}]
Example
2: Find the derivative of
the function;
y= 2x/sin x
Solution: Let;
u = 2x then du/dx =2
Let; v= sin x then dv/dx=cos x
Hence;
dy/dx=[2sin x -2xcos x]/sin^2x=2[sin x – x
cos x]/ sin^{2}x
(d)
Chain rule
Let y be a differentiable function of u
i.e. y=f(u) and that u is a differentiable function of x i.e. u=g(x),
then y is a differentiable function of x i.e. y=f(g(x)), and;
dy/dx=(dy/du )(du/dx)
Example 1: Suppose y=(3x^{5}+7x^{4})^{4}, find dy/dx
Solution:
Let u=3x^{5}+7x^{4} then du/dx=15x^{4}+28x^3
Also y=u^{4} then dy/du=4u^{3}
By definition
dy/dx=(dy/du)(du/dx)=(4u^{3})(15x^{4}+28x^3)
=4(15x^{4}+28x^3)(3x^{5}+7x^{4})^{3}
=4x^{3}(15x+28)(3x^{5}+7x^{4})^{3}
No comments:
Post a Comment